Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Experimental & Molecular Medicine ; : 110-114, 2000.
Article in English | WPRIM | ID: wpr-105755

ABSTRACT

Electroconvulsive shock (ECS) has been suggested to affect cAMP signaling pathways to exert therapeutic effects. ECS was recently reported to increase the expression of PDE4 isoforms in rat brain, however, these studies were limited to PDE4 family in the cerebral cortex and hippocampus. Thus, for comprehensive understanding of how ECS regulates PDE activity, the present study was performed to determine whether chronic ECS treatment induces differential changes in the expression of all the PDE isoforms in rat brains. We analyzed the mRNA expression of PDE isoforms in the rat hippocampus and striatum using reverse transcription polymerase chain reaction. We found chronic ECS treatment induced differential changes in the expression of PDE isoform 1, 2, 3, 4, 5 and 7 at the rat hippocampus and striatum. In the hippocampus, the expression of PDE1A/B (694%), PDE4A (158%), PDE4B (323 %), and PDE4D (181%) isoforms was increased from the controls, but the expression of PDE2 (62.8%) and PDE7 (37.8%) decreased by chronic ECS treatment. In the striatum, the expression of PDE1A/B (179%), PDE4A (223%), PDE4B (171%), and PDE4D (327%) was increased by chronic ECS treatment with the concomitant decrease in the expression of PDE2 (78.4%) and PDE3A (67.1%). In conclusion, chronic ECS treatment induces differential changes in the expression of most PDE isoforms including PDE1, PDE2, PDE3, PDE4, PDE5, and PDE7 in the rat hippocampus and striatum in an isoform- and brain region-specific manner. Such differential change is suggested to play an important role in regulation of the activity of PDE and cAMP system by ECS.


Subject(s)
Male , Rats , 3',5'-Cyclic-AMP Phosphodiesterases/analysis , Animals , Corpus Striatum/enzymology , Electroconvulsive Therapy , Gene Expression Regulation, Enzymologic , Hippocampus/enzymology , Isoenzymes/analysis , Rats, Sprague-Dawley
2.
Experimental & Molecular Medicine ; : 179-184, 1999.
Article in English | WPRIM | ID: wpr-158708

ABSTRACT

Heart disease is one of the major cause of death in diabetic patients, but the thogenesis of diabetic cardio-myopathy remains unclear. In this experiment, to sess the significance of G protein signaling pathways in the pathogenesis of abetic cardiomyopathy, we analyzed the expression of G proteins and the tivities of second messenger dependent protein kinases: cAMP-dependent protein nase (PKA), DAG-mediated protein kinase C (PKC), and calmodulin dependent otein kinase II (CaM kinase II) in the streptozotocin induced diabetic rat art. The expression of Galphaq was increased by slightly over 10% (P<0.05) in abetic rat heart, while Galphas, Galphai, and Gbeta remained unchanged. The A activity in the heart did not change significantly but increased by 27%<0.01) in the liver. Insulin treatment did not restore the increased activity the liver. Total PKC activity in the heart was increased by 56% (P<0.01), and sulin treatment did not restore such increase. The CaM kinase II activity in e heart remained at the same level but was slightly increased in the liver 4% increase, P<0.05). These findings of increased expression of Galphaq in the reptozotocin-diabetic rat heart that are reflected by the increased level of C activity and insensitivity to insulin demonstrate that alteration of Galphaq y underlie, at least partly, the cardiac dysfunction that is associated with abetes. Copyright 2000 Academic Press.


Subject(s)
Male , Rats , Animals , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/chemically induced , GTP-Binding Proteins/metabolism , Insulin/pharmacology , Liver/metabolism , Liver/drug effects , Myocardium/metabolism , Protein Kinase C/metabolism , Rats, Sprague-Dawley , Signal Transduction , Streptozocin
3.
Experimental & Molecular Medicine ; : 235-239, 1998.
Article in English | WPRIM | ID: wpr-159764

ABSTRACT

Heterotrimeric guanine nucleotide binding regulatory proteins (G proteins) transduce extracellular signals into intracellular signals by coupling receptors and effectors. Because most of the G protein-coupled receptors are integral proteins, the G proteins need to have a membrane binding capacity to receive signals from the receptors. The alpha subunit of G protein binds tightly to the cytoplasmic face of the plasma membrane without any membrane spanning domain. Fatty acylation of G alpha with myristic acid or palmitic acid, in addition to the beta gamma subunits, plays an important role in anchoring the G alpha subunit. The reversible and dynamic palmitoylation of the alpha subunit of stimulatory G protein (Gs alpha) has been suggested as essential for its membrane attachment. However, in our previous experiments, Gs alpha deleted in the amino terminus containing palmitoylation site, retained its binding capacity when expressed in COS cells. Thus, to evaluate the role of palmitoylation in Gs alpha membrane binding, we constructed and expressed non-palmitoylated mutants of Gs alpha and analyzed their subcellular distributions in COS-1 cells. We found that non-palmitoylated mutants of Gs alpha, C3S- and G2A/C3S Gs alpha, retained their membrane binding capacities in COS-1 cells, demonstrating that palmitoylation is not essential for membrane binding of Gs alpha in COS-1 cells. We also found that the palmitoylation did not change significantly the distribution of Gs alpha in Triton X-114 partition. These results suggest that the palmitoylation of Gs alpha may produce different effects on membrane binding depending on cell types.


Subject(s)
Rats , Animals , Blotting, Western , COS Cells , Cell Membrane/metabolism , Detergents/pharmacology , GTP-Binding Protein alpha Subunits, Gs/metabolism , GTP-Binding Protein alpha Subunits, Gs/genetics , Immunoblotting , Isoproterenol/metabolism , Mutagenesis , Palmitates/metabolism , Polyethylene Glycols/pharmacology , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL